If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3v2 + 44v + 49 = 0 Reorder the terms: 49 + 44v + 3v2 = 0 Solving 49 + 44v + 3v2 = 0 Solving for variable 'v'. Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 16.33333333 + 14.66666667v + v2 = 0 Move the constant term to the right: Add '-16.33333333' to each side of the equation. 16.33333333 + 14.66666667v + -16.33333333 + v2 = 0 + -16.33333333 Reorder the terms: 16.33333333 + -16.33333333 + 14.66666667v + v2 = 0 + -16.33333333 Combine like terms: 16.33333333 + -16.33333333 = 0.00000000 0.00000000 + 14.66666667v + v2 = 0 + -16.33333333 14.66666667v + v2 = 0 + -16.33333333 Combine like terms: 0 + -16.33333333 = -16.33333333 14.66666667v + v2 = -16.33333333 The v term is 14.66666667v. Take half its coefficient (7.333333335). Square it (53.77777780) and add it to both sides. Add '53.77777780' to each side of the equation. 14.66666667v + 53.77777780 + v2 = -16.33333333 + 53.77777780 Reorder the terms: 53.77777780 + 14.66666667v + v2 = -16.33333333 + 53.77777780 Combine like terms: -16.33333333 + 53.77777780 = 37.44444447 53.77777780 + 14.66666667v + v2 = 37.44444447 Factor a perfect square on the left side: (v + 7.333333335)(v + 7.333333335) = 37.44444447 Calculate the square root of the right side: 6.119186586 Break this problem into two subproblems by setting (v + 7.333333335) equal to 6.119186586 and -6.119186586.Subproblem 1
v + 7.333333335 = 6.119186586 Simplifying v + 7.333333335 = 6.119186586 Reorder the terms: 7.333333335 + v = 6.119186586 Solving 7.333333335 + v = 6.119186586 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-7.333333335' to each side of the equation. 7.333333335 + -7.333333335 + v = 6.119186586 + -7.333333335 Combine like terms: 7.333333335 + -7.333333335 = 0.000000000 0.000000000 + v = 6.119186586 + -7.333333335 v = 6.119186586 + -7.333333335 Combine like terms: 6.119186586 + -7.333333335 = -1.214146749 v = -1.214146749 Simplifying v = -1.214146749Subproblem 2
v + 7.333333335 = -6.119186586 Simplifying v + 7.333333335 = -6.119186586 Reorder the terms: 7.333333335 + v = -6.119186586 Solving 7.333333335 + v = -6.119186586 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-7.333333335' to each side of the equation. 7.333333335 + -7.333333335 + v = -6.119186586 + -7.333333335 Combine like terms: 7.333333335 + -7.333333335 = 0.000000000 0.000000000 + v = -6.119186586 + -7.333333335 v = -6.119186586 + -7.333333335 Combine like terms: -6.119186586 + -7.333333335 = -13.452519921 v = -13.452519921 Simplifying v = -13.452519921Solution
The solution to the problem is based on the solutions from the subproblems. v = {-1.214146749, -13.452519921}
| 14x+24=7x | | 24x^2-216x+665=0 | | 3(ln)x=1 | | y(y-5)=-750 | | 3(2x-0.3)=15.1-10(0.2+0.1x) | | 2y+8+7=61 | | (2x-5)*(2x+5)= | | 3(0.1x-1.4)=-(1.4+0.1x) | | 7i+7= | | 4.9-1.9=27.5 | | 4x^2+36x-168=0 | | 5x-8+4x=10 | | z+28=32-z | | z+28=56-z | | x-25=2x-2 | | 35x=D*3.14 | | 35x=D*pi | | 2x-12+8=4x-2 | | 25x-8-13+3=26x-3-14x+15 | | (x+5)+x+2(x+5)=43 | | 6x^5-5x^4+26x^3+21x^2+8x-4=0 | | 7-2[x-4+3(x-2)]= | | -2x+4=4+3k | | (x+5)+x+2(43-3(x+5))=43 | | 5n-1=rn | | y^2=(15-5x^2)/3 | | 90-(7x-1)=180 | | 4-x^2-16y^2=0 | | y+x+2y=43 | | 7-2[x-4+3(3x-2)]= | | 3w-2w=2+3 | | (3x+4)(x-3)=0 |